Showing posts with label astronomy. Show all posts
Showing posts with label astronomy. Show all posts

Wednesday, May 31, 2017

The Small Mars Problem

Figure 1. All planets and dwarf planets orbiting within 6 astronomical units (AU) of our Sun, shown at their relative diameters.
------------------------------------------

From afar, our Solar System looks regular and well-organized. At its center is a large, massive sphere of incandescent gases (the Sun) surrounded by eight smaller and less massive spheres of heavier elements (the planets) distributed in concentric orbits out to a distance of about 4.5 billion km/2.8 billion miles.

The orbital distribution of the eight planets also seems regular, at least at first glance. Smaller, rocky worlds are confined to the inner system, while larger, gaseous worlds dominate the outer system. Planet sizes follow a curve, rising from the inner to the middle planets and then declining again from the middle to the outer planets.

In more specific terms, mass and radius increase along with distance among the three planets closest to the Sun (Mercury through Earth). Both parameters peak at the orbit of the fifth planet, Jupiter, which is almost a dozen times the radius and more than 300 times the mass of Earth. Then, from Jupiter through Uranus, the seventh planet, both mass and radius decline substantially along with distance from the Sun.

But this orderly progression of planet sizes has two notable interruptions: Mars and Neptune. If the distribution of planets were truly regular, Mars would be larger and more massive than Earth, and Neptune would be smaller and less massive than Uranus. Instead, the Red Planet has only 53% of Earth’s radius (0.53 Rea) and 11% of its mass (0.11 Mea), while the Azure Planet, at 17.2 Mea and 3.9 Rea, has about 98% of the radius of Uranus but 119% of its mass.

How did that happen?

In the present post I’m going to ignore the oddity of Neptune and concentrate on the Martian half of the question. My rationale is that Mars occupies our system’s classical habitable zone, and therefore – along with Earth and Venus – plays a critical role in theories of the habitability of extrasolar planets. If mass had been more uniformly distributed in the inner Solar System, Mars would be more massive than it is. If its mass were in the range of 1 to 2 Mea, Mars would likely be able to sustain a magnetic field, plate tectonics, surface water, and long-term habitability. Therefore, if we want to understand the potential system architectures that might support life-bearing planets, we need to understand why Mars is so small.

Figures 1 and 2 highlight the Small Mars Problem and the Great Martian Gap, which is the name I just invented for the general depletion of mass between Earth and Jupiter. The planet Mars and the dwarf planet Ceres orbit within this gap at 1.52 AU and 2.77 AU, respectively. With a little more than 1% of the mass of our Moon, Ceres accounts for fully one-third of all mass in the Asteroid Belt, which is concentrated between 2.2 and 3.3 AU (the latter boundary provided by the 2:1 resonance with Jupiter's orbit; Jewitt et al. 2009). The entire region between the orbits of Earth and Jupiter contains less than 0.12 Mea, with little Mars accounting for 99% of the total. By contrast, the region extending inward from Earth’s orbit to the Sun contains 1.87 Mea, yet Earth, the most massive object, accounts for only 53% of the total.

Figure 2. The Great Martian Gap

Blue numbers along the bottom refer to astronomical units (AU), where the Earth/Sun separation = 1. Planets are shown at their relative sizes and relative distances from the Sun, with separate scales for radius and distance. As astronomers have long noted, mass is severely depleted between the orbit of Jupiter at 5.2 AU and the orbit of Earth at 1 AU (see Weidenschilling 1977).
------------------------------------------

zigzag migration

Recent studies by Konstantin Batygin & Greg Laughlin (2015) and by Sean Raymond & colleagues (2016) have presented conflicting scenarios to explain the Small Mars Problem and the Great Martian Gap. Both involve zigzag migratory paths for Jupiter during the primordial phase of system evolution.

Batygin & Laughlin based their approach on earlier models by Kevin Walsh & colleagues (2011) and Pierens & Raymond (2011), in which Jupiter formed in the outer Solar System (somewhere beyond 3 AU) and then migrated first inward and then outward again. The popular name for this scenario (blogged here and here) is the Grand Tack. According to Batygin & Laughlin, these maneuvers not only swept most solid mass out of the region exterior to Earth’s present orbit, but also created an instability that emptied the region interior to 0.7 AU.

Raymond & colleagues took a very different approach based on the “inside out” model of planet formation presented by Chatterjee & Tan (2014). Contrary to his own earlier work, Raymond’s group proposed that Jupiter formed in the inner Solar System near the Sun, and then migrated first outward, then inward, and finally outward again, depleting the region inward of Venus and wreaking havoc beyond Earth.

sweeping secular resonances

While the Grand Tack has been more widely discussed and endorsed than the inside-out scenario, both explanations have been faulted. Now Benjamin Bromley & Scott Kenyon (2017) present an alternative approach in which “sweeping secular resonances” with Jupiter’s orbital motion, rather than any migratory scenario, become the mechanism for clearing the Great Martian Gap. Their model implies a less dramatic but equally consequential role for Jupiter, and I suspect that it can be extended to explain similar gaps observed in the architecture of multiplanet systems around other stars.

To develop their model, Bromley & Kenyon (hereafter BK17) conducted extensive numerical simulations based on earlier work by and with their collaborators Makiko Nagasawa and Edward Thommes (Nagasawa et al. 2007, Thommes et al. 2008). They also note recent work on the same problem by Xiaochen Zheng & colleagues (2017).

BK17 begin with the familiar theoretical construct of the Minimum Mass Solar Nebula (blogged here). They assume that a dusty gas nebula (generally known as a protoplanetary disk) is present at the outset of their simulations. Jupiter is fully formed at its current semimajor axis of 5.2 AU (Figure 2), having cleared a gap in the disk for 1 AU on either side of its orbital path. A swarm of planetesimals orbits inward of this gap, while Saturn orbits well beyond it. Both gas giants exert gravitational effects on their surroundings, and the disk itself has gravity. In addition, the orbit of Jupiter is slightly eccentric, but probably less so than its present value of 0.05. BK17 assume an eccentricity of 0.03 in their simulations.

The key factor in their approach is the n5 resonance (“nu-5,” Greek letter nu with superscript 5), a “secular” or “very long-term” resonance between the motion of the protoplanetary disk and Jupiter’s orbital period. BK17 define the nu-5 resonance as the location “where the local apsidal precession rate matches Jupiter’s rate of precession,” and note that a planetesimal or protoplanet at this location will be perturbed by Jupiter’s gravitational influence onto a highly eccentric orbit. The likely result will then be either collision with another planet or protoplanet, engulfment by the Sun, or ejection from the Solar System.

In the early Solar System, when the gas disk was still present, the nu-5 resonance was located in the vicinity of the present Asteroid Belt (Zheng et al. 2012). As the gas dissipated, the resonance moved inward, destabilizing (“shaking up”) the orbits of protoplanets and planetesimals and effectively clearing out a substantial mass in solids. After the gas was completely depleted, the nu-5 resonance reached its present position inside the orbit of Venus. This sweeping shake-up created the Great Martian Gap while leaving behind enough mass to build Earth and Venus, as well as their two by-blows, Mercury and Mars.

BK17 discovered that several different factors were critical to reproducing the mass of Mars and the present-day Asteroid Belt within the time constraints provided by the known age of Mars. These include the mass of the perturbing planet, its distance from the system habitable zone, and the timing and speed of the sweeping secular resonance generated by its orbital motion.

Regarding mass, BK17 find that only a “Jupiter-mass planet” can produce the magnitude of perturbation required to induce a shake-up in the protoplanetary disk of a Sun-like star. Unfortunately, they don’t provide a precise value for the necessary mass – for example, would an object of Saturn’s mass (95 Mea) be sufficient? They also note that a “super-Earth” would be massive enough to produce sweeping secular resonances in an M dwarf system, likely referring to an object in the range of 1-10 Mea (see, e.g., Kenyon & Bromley 2009).

Regarding orbital location, they find that the masses of Earth and Mars depend sensitively on the semimajor axis of Jupiter at the time of the sweeping resonance. If Jupiter had been substantially farther from the Sun, the resonance would never have reached the orbit of Mars, and Mars would have grown much bigger than it actually did – presumably massive enough to support a habitable environment. But if Jupiter had been substantially closer to the Sun, and thus closer to the system habitable zone, the resonance would have inhibited the formation of Earth in the same way that it stunted the growth of Mars when Jupiter was at 5.2 AU. Instead of one living planet, our system would have none at all.

Regarding the timing of the sweeping secular resonance, BK17 note that its schedule is determined by the lifetime of the protoplanetary disk. As we saw in an earlier post, the system age when gas dissipation commences can fall anywhere between 1 and 10 million years. At the early end of that range, according to BK17, dissipation accompanied by shake-up would have extremely negative consequences for rocky planet formation, as it would destroy planetesimals before they had time to accrete into protoplanets. At the latter end, however, the effects would be modest, since accretion would already be well advanced, potentially permitting the growth of Earth-size planets out to a distance of 3 AU. In the case of our Solar System, we can assume that the shake-up happened before a system age of about 4 million years, given radiometric evidence that Mars was fully formed by then.

The rate of disk dispersal also matters. Although many studies have found that gas dissipation happens rapidly, requiring less than half a million years from start to finish (Williams & Cieza 2011), variation is inevitable: some disks take longer than others to disperse. BK17 find that the relative speed of dissipation strongly affects the outcomes of secular resonance sweeping. If the gas dissipates quickly, the resonance sweeps inward at the same rate, resulting in minimal disruption of the planetesimal population. If the gas dissipates more slowly, the resonance becomes increasingly more destructive, clearing larger and larger quantities of solid mass from the system.

Figure 3. Calaveras street sweepers on the Day of the Dead
From a print by José Guadalupe Posada (1852-1913)
-----------------------

extrasolar asteroids and orbital gaps

Although BK17 are interested primarily in the evolution of our Solar System, they attempt to generalize some of their results to extrasolar locales. Their chief concern is the occurrence of extrasolar analogs of the Asteroid Belt. They argue that most systems with a gas giant in Jupiter’s approximate location (i.e., just outside the system ice line, where accretion is maximized) will experience a sweeping secular resonance whose outcome will be a ring of rocky debris in the inner system. While they concede that few such structures have been discovered to date (HD 69830 is most familiar), they attribute these limited findings to the difficulty of discerning modest aggregations of warm debris even around nearby stars. In the future, they predict, more sensitive searches will be more successful.

I suggest that the implications of their model are much broader than their relevance to extrasolar asteroid belts, and far more dispiriting. If sweeping secular resonances are common in systems with cool gas giants, then the outlook for habitable planets is even less promising than I thought. Here’s why.

An important focus of this blog is the possibility of Solar System analogs – that is, exoplanetary systems containing cool giants whose orbital parameters would permit the survival of Earth-mass planets (0.5-2 Mea) in the local habitable zone. (For recent posts on this topic, see here and here.) My January search of the Extrasolar Planets Encyclopaedia identified 17 such systems located within 60 parsecs/196 light years. All center on Sun-like stars in the range of 0.85-1.15 Solar masses, so their habitable zones have boundaries similar to those proposed for our own system (0.99-1.70 AU; Kopparapu et al. 2013).

Among the Jupiter analogs in these systems, semimajor axes range from 3 AU to 5.2 AU, and more than half orbit inside 4 AU. According to the findings of BK17, virtually all these systems will have experienced a sweeping secular resonance very similar to the one they propose for the Solar System. Because all but one of the 17 confirmed Jupiter analogs orbits closer to the local habitable zone than does our own Jupiter, the depletion of mass in this favored region is likely to be even more extreme than it was at home. Therefore, habitable planets appear to be less likely in the existing sample of Solar System analogs than they are in the Solar System.

To put it another way: BK17 have just shown that gas giant planets are even more unfriendly to the formation and survival of habitable planets than we already suspected. It’s not enough for the giant to reside outside the system ice line in a configuration that permits an Earth-like planet to maintain an Earth-like orbit. The giant must also be distant enough from the central star that the sweeping secular resonance generated by its orbit was insufficient to clear solid mass from the local habitable zone. Even Jupiter managed to evacuate mass from more than half of the radial extent of our own habitable zone, drastically reducing our system’s potential to produce life-bearing planets. Now it looks like extrasolar Jupiters might be still more likely to foreclose the possibility of life around other stars.


REFERENCES
Batygin K, Laughlin G. (2015) Jupiter’s decisive role in the inner Solar System’s early evolution. Proceedings of the National Academy of Sciences 112, 4214-4217. Abstract: 2015PNAS..112.4214B
Bromley BC, Kenyon SJ. (2017) Terrestrial planet formation: Dynamical shake-up and the low mass of Mars. Astronomical Journal 153, 216. Abstract: 2017AJ....153..216B
Chatterjee S, Tan JC. (2014) Inside-out planet formation. Astrophysical Journal 780, 53.
Jewitt D, Moro-Martín A, Lacerda P. (2009) The Kuiper Belt and Other Debris Disks. In Astrophysics in the Next Decade, edited by Harley A. Thronson, Massimo Stiavelli, Alexander Tielens. Springer. Abstract: 2009ASSP...10...53J
Kopparapu R, Ramirez RM, Kasting JF, Eymet V, Robinson TD, Mahadevan S, Terrien RC, Domagal-Goldman S, Meadows V, Deshpande R. (2013) Habitable zones around main-sequence stars: New estimates. Astrophysical Journal 65, 131.
Kenyon SJ, Bromley BC. (2009) Rapid formation of icy super-Earths and the cores of gas giant planets. Astrophysical Journal 690, L140-L143.
Nagasawa M, Thommes EW, Kenyon SJ, Bromley BC, Lin DNC. (2007) The diverse origins of terrestrial-planet systems. In Protostars and Planets V, edited by B. Reipurth, D. Jewitt, K. Keil. University of Arizona Press, pages 639-654. Abstract: 2007prpl.conf..639N
Pierens A, Raymond SN. (2011) Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. Astronomy & Astrophysics 533, A131. Abstract: 2011A&A...533A.131P
Raymond SN, Izidoro A, Bitsch B, Jacobson SA. (2016) Did Jupiter’s core form in the innermost parts of the Sun’s protoplanetary disk? Monthly Notices of the Royal Astronomical Society 458, 2962-2972. Abstract: 2016MNRAS.458.2962R
Thommes E, Nagasawa M, Lin DNC. (2008) Dynamical shake-up of planetary systems. II. N-body simulations of Solar System terrestrial planet formation induced by secular resonance sweeping. Astrophysical Journal 676, 728-739. Abstract: 2008ApJ...676..728T
Weidenschilling JS. (1977) The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science 51, 153-158.
Williams JP, Cieza LC. (2011) Protoplanetary disks and their evolution. Annual Review of Astronomy and Astrophysics 49, 67-117. Abstract: 2011ARA&A..49...67W
Zheng X, Lin DNC, Kouwenhoven MBN. (2017) Planetesimal clearing and size-dependent asteroid retention by secular resonance sweeping during the depletion of the Solar Nebula. Astrophysical Journal 836, 207.


Monday, January 2, 2017

2016: Backyard Bonanza



Figure 1. A snapshot of 79 exoplanetary systems located within 20 parsecs (65 light years), arranged by increasing distance from our Sun. Names in red mark planets added to the census in 2016. Spectral types are indicated by the color key at lower right. The inner circle has a radius of 5 parsecs, and each successive ring represents an increment of 5 parsecs. Stellar icons are arranged in 2 dimensions by right ascension, which is marked at the edge of the outer circle; declination is ignored. Note that this diagram shows the relative distance of planetary systems from our Sun, but not from each other.


----------------------
Without doubt, the biggest exoplanetary news of 2016 was the announcement of a small planet orbiting Proxima Centauri, a dim red star that happens to be our Sun’s closest neighbor. Not only did this story dominate headlines in the popular media: a recent query of the SAO/NASA Astrophysics Data System returned a total of 28 scientific articles about Proxima Centauri (including the discovery paper) either published or in press over the past 5 months. My blog post on the detection (The Perils of Proxima) was the biggest click magnet for Back Alley Astronomy in 2016.

No other discovery, analysis, or commentary in the field of exoplanetary astronomy rivaled the news from Proxima. Given the imbalance, it would be a stretch to concoct a “Top Ten” list of extrasolar news for the year just ended. So I’ll content myself with a Top Five: 1) the announcement of Proxima Centauri b by Guillem Anglada-Escudé & colleagues (blogged here), 2) the radial velocity detection of a sixth planet in the well-known Kepler-20 system by Lars Buchhave & colleagues (blogged here), 3) the final data dump of the Kepler Mission, which added 1,284 mostly lonely planets to the extrasolar census in one fell swoop (blogged here), 4) the return of Rho Coronae Borealis b, one of the first exoplanets ever announced, which was widely rejected as a bona fide planet a few years ago and then restored to consensual reality by Benjamin Fulton & colleagues, and 5) the discovery by Michael Endl & colleagues of a new Jupiter analog, HD 95872 b, which like Proxima Centauri b is located right in the Sun’s back yard (announced in a preprint late in 2015 but not formally published – or noticed by me – until 2016). Since I haven’t yet written about the last two items, I’ll devote some words to these less heralded new arrivals, and then assess the message their discoveries might be telling us about our immediate Galactic neighborhood.

the newest, nearest Jupiter analog

HD 95872 b is a gas giant planet in a more or less circular orbit whose estimated period of 4375 days falls within 1% of the orbital period of Jupiter. It was reported along with another cool gas giant – the latter following a notably eccentric orbit around a somewhat more distant star, Psi Draconis – by Endl et al. (2016).

The host star, HD 95872, is located just 25 light years away (7.56 parsecs) in the constellation of Crater the Wine Bowl. By any definition, it is a Sun-like star, included in the respectable Henry Draper Catalog and assigned a spectral type of K0 V in the SIMBAD database. However, Endl’s group reports a few stellar oddities. First, this object was omitted from the Hipparcos Catalog of nearby stars, from which most targets monitored by radial velocity searches have been drawn. The omission means that HD 95872 did not receive a precise distance estimate during the Hipparcos mission, a factor noted without comment by Endl & colleagues. Second, the star’s assigned spectral type seems rather late (i.e., reddish) for the mass of 0.95 ±0.4 Solar (0.95 ±0.4 Msol) determined by Endl’s group. For context, Kepler-20 has a virtually identical mass, but its spectral type is G2. Third, at an estimated age of 10 billion years, a star near Solar mass is likely to be evolving into a subgiant – an expectation contradicted by the classification of HD 95872 as a main sequence star by SIMBAD as well as Endl’s group.

HD 95872 bears a notable resemblance to 55 Cancri, another nearby star that also happens to host a gas giant in an orbit similar to Jupiter’s. Both the mass (0.90 ±0.015 Msol) and the age (10.2 billion years) of 55 Cancri are similar to those of HD 95872, and both stars are also significantly enriched in metals. According to von Braun & colleagues (2011), the metallicity of 55 Cancri is +0.31, while Endl & colleagues report +0.41 for HD 95872. Given these similarities, it’s illuminating to remember that the spectral classification of 55 Cancri is subject to disagreement, with published types ranging from G8 V to K0 IV. (Note that alternative values of 3-9 billion years are available for the age of 55 Cancri; see Teske et al. 2013.)

As substantial research has shown, metal-rich stars like 55 Cancri and HD 95872 have a high likelihood of supporting gas giant planets. 55 Cancri hosts two: planet b with an orbital radius of 0.11 astronomical units (AU) and a minimum mass 0.83 times Jupiter (0.83 Mjup), and planet d with an orbital radius of 5.76 AU and a minimum mass of 3.84 Mjup. 55 Cancri also hosts two tweens (objects intermediate in mass between Neptune and Saturn) in the gap between planets b and d, plus a dense, highly irradiated Super Earth interior to planet b with a mass of about 8 Earth units (8 Mea) and an orbital period shorter than 24 hours. These massive progeny illustrate the superior planet-forming potential of metal-rich protoplanetary disks.

Our new friend, HD 95872, has only a single reported planet, for which Endl & colleagues provide a minimum mass of 4.6 Mjup. This is similar to the estimate for 55 Cancri d, but well above the median for the full census of gas giants. For orbital period and semimajor axis, Endl’s group reports values almost identical to those of Jupiter: respectively 4375 days and 5.2 AU. In addition, they find a relatively circular orbit, although their results for eccentricity are understandably imprecise: 0.06 ±0.04. Within uncertainties, this value is consistent with the well-measured eccentricity of Jupiter: 0.048.

Endl & colleagues confidently identify both HD 95872 b and their other new planet, Psi Draconis b, as Jupiter analogs. They define such planets as “within a factor of a few Jupiter-masses and in orbits longer than 8 years.” As explained in a previous post (Almost Jupiter), I find this definition incomplete, since I’m more interested in analogs of our Solar System than in cool gas giants per se. My definition of a Jupiter analog is 1) a gas giant planet (minimum mass 0.16 Mjup/50 Mea) that is 2) located outside the system’s liquid water zone 3) with an orbit whose eccentricity is under 0.3 and 4) with a semimajor axis that permits the survival of terrestrial planets on habitable orbits but 5) without any gas giant companions on interior orbits. A Solar System analog contains a cool giant that meets all these criteria and is centered around a Sun-like star in the mass range of 0.65-1.30 Msol, corresponding to spectral types between mid K and late F.

HD 95872 nicely satisfies all these criteria and thereby assumes the status of the nearest Solar System analog, demoting HD 154345 to the second-nearest. But Psi Draconis, the other system reported by Endl et al., does not meet my standard. Despite its appealingly memorable name, this system is disqualified by the significant orbital eccentricity (0.4) of its gas giant, Psi Draconis b. It’s a disappointing result, since the host star is very similar to our Sun in age, mass, and spectral type, and it’s only 22 parsecs away.

In light of these recent discoveries, I conducted a new review of the full sample of exoplanets detected by radial velocity measurements (the only technique that has managed to characterize any Solar System analogs). I based the review on a December download of the catalog of the Extrasolar Planets Encyclopaedia (EPE), with additional revisions based on discovery papers. The results appear in Table 1. Systems are listed by increasing semimajor axis of the Jupiter analog.

Table 1. Seventeen potential analogs of our Solar System
Tags: Type = spectral type; Msol = star mass in Solar units; [Fe/H] = metallicity; Dist. = distance in parsecs (rounded); Mjup = planet mass in Jupiter units; a = semimajor axis in Earth units; e = orbital eccentricity; Period = orbital period in years. Selection criteria: star mass 0.65-1.30 Msol; a > 3 AU; e < 0.3, no interior giants perturbing the system habitable zone. Note: HD 30177 has a second planet, a massive “Saturn analog” on an orbit exterior to planet b, with an uncertain orbital period.
------------------------------------------

This is the third time I’ve searched the EPE sample for Solar System analogs during the past few years (previously blogged here and here), and each time the population has grown. HD 95872 is an especially welcome addition. Not only is it the nearest Jupiter analog – it also has the longest orbital period of the lot, making it Jupiter’s closest rival within this subset.
The 17 systems summarized in Table 1 bear a strong family resemblance, at least in terms of their gross parameters. But how much of the apparent similarity might stem from selection biases?

Distance: All but 2 are located at distances between 25 and 60 parsecs; no Solar System analogs have been reported outside that space. Their scarcity inside 25 parsecs might be an accurate reflection of the absolute rarity of such systems, but their absence beyond 60 parsecs almost certainly results from historical limits on the sensitivity of radial velocity searches.

Star mass: Even given my inclusion criterion of 0.65-1.3 Msol, the host stars fall in a narrow range of masses – 0.88-1.18 Msol – and center on a narrow range of spectral types – early to mid G. All are thus extremely similar to our Sun (type G2), while stars less massive than 0.85 Msol are conspicuously absent from the list. Since the entire population is based on continuing searches that began decades ago, this outcome might simply reflect the preference of early search programs for G-type stars. On the other hand, the non-appearance of stars in the range of 0.65-0.85 Msol might be significant. Maybe architectures like the Solar System are restricted to more massive stars.

Metallicity: Eleven out of 17 host stars have Solar metallicity or less; only 4 have [Fe/H] greater than +0.2, which would indicate a notable enhancement in heavy elements. My own (not very educated) guess is that this relative indifference to metallicity might be real. In any case, the scarcity of extremely metal-rich stars in this population supports the premise that our Sun is a typical host of Jupiter analogs. It also warrants a reminder that even the Sun is metal-rich compared to the average star in our Galactic neighborhood, where typical metallicities are about -0.10. Whether or not cool giants on circular orbits are intrinsically rare around stars impoverished in heavy elements, no extreme metallic enrichment seems necessary to form them.

Planet mass: The median gas giant mass in this sample is approximately 2 Mjup, and only 2 of these “Jupiter analogs” have masses smaller than 0.99 Mjup. This outcome might be just another reflection of the limited sensitivity of the radial velocity method, since planets of lower mass are more difficult to detect on long-period orbits. But it might instead be a clue that Jupiter is relatively small for a cool giant, and that most of its analogs are more massive.


Orbital eccentricity: Most gas giants with semimajor axes of 3 AU or more have eccentricities in excess of 0.5, and many giants with smaller eccentricities have giant companions on interior orbits that rule out Earth-like planets. Even in Table 1, which includes only unaccompanied giants with eccentricities < 0.3, the median value of 0.1 is relatively high by the standards of our Solar System. Of course, it’s possible that exoplanetary eccentricities are systematically overestimated (Shen & Turner 2008), and that the giants in Table 1 are actually less eccentric (and therefore friendlier) than they look on the screen. But it’s also possible that cool giants on orbits as circular as Jupiter’s are even rarer than Hot Jupiters. If eccentricity < 0.1 turns out to be the limiting factor for Solar System analogs, then they are much less numerous than I project here.


-------------------------------


On the other hand, if Table 1 presents a reasonable survey of systems like our own, the outlook for Earth-like planets is rosy. The available data now show that 2 out of 260 star systems (0.8%) identified within 10 parsecs – including almost 3% of the 70 FGK stars in this space – host a gas giant on a cool orbit that would permit the survival of Earth-like planets in the habitable zone. Since one of those two star systems (our own) is known to support such a world, we’re entitled to conjecture that the other one (HD 95872) does, too.


If we restrict our scope to stars other than our Sun with confirmed planets, rather than all known stars, we can say that 2% (N=2) of the 79 exoplanetary systems located within 20 parsecs qualify as Solar System analogs. Furthermore, if Jupiter analogs are at least as common as Hot Jupiters, as various analyses suggest, then 3 more systems resembling our own might be awaiting discovery within the same volume of space. That prediction rests on the fact that five Hot Jupiters are already known in this region. If we further extend this back-of-the-envelope approach to a radius of 60 parsecs, we can say that a dozen more Solar System analogs await detection in the immediate Solar neighborhood, since more than 30 Hot Jupiters systems have been reported in that space, but only 17 bona fide analogs of our system.

counting planets in the Sun’s back yard

The statistics on exoplanets within any volume-limited sample depend sensitively on how many such planets we regard as validated. Unfortunately, different exoplanetary catalogs offer different pictures even of the well-studied space within 20 parsecs. Accordingly, I have to approach this problem with a consistent set of exclusions: Alpha Centauri b, Kapteyn’s b & c, all companions identified as brown dwarfs, and all objects reported by direct imaging or astrometry, with the exception of Beta Pictoris b.

When I apply these criteria to the full census maintained by EPE, along with corrections for stellar parameters found in the literature, I get the 79 systems pictured in Figure 1. Given additional exclusions discussed in a series of older blog posts (starting here, most recently here), these 79 systems support a total of 141 planets.

However, if I apply the same criteria to the NASA Exoplanet Archive, I get a notably smaller sample of 65 systems supporting only 113 planets. Much of the mismatch can be explained by NASA’s exclusion of candidates reported in an unpublished manuscript by Michel Mayor & colleagues (2011), as well as other candidates proposed by other investigators on the strength of Bayesian reanalyses of existing radial velocity data (see list of exclusions here). Thus even my relatively skeptical approach might err on the side of optimism.

The difficulty of establishing an accurate count of the known exoplanetary systems, let alone the very nearest, is illustrated by the observational history of Rho Coronae Borealis. This Sun-like star, one of the first to be identified as an exoplanetary host, is located 17.24 parsecs (56 light years) away. In 1997, Robert Noyes & colleagues reported an object (b) with a minimum mass of 1.1 Mjup orbiting this star in a period of 39 days with an eccentricity of 0.03. Although their radial velocity measurements could not rule out much higher masses, they presented theoretical arguments in favor of a gas giant planet instead of a brown dwarf star.

Follow-up studies summarized by Fulton et al. (2016) presented additional astrometric data that, according to several astronomers, unmasked the so-called exoplanet as a very dim M dwarf or massive brown dwarf.  In this argument, the original mass value reported by Noyes & colleagues was a drastic underestimate, because we happen to observe the system from a face-on viewing angle. Such a geometry minimizes the Doppler shift detectable from Earth, whereas an edge-on angle maximizes it. According to this argument, the companion must be at least 100 times more massive than Jupiter.


Most radial velocity detections that are not supported by transit observation are vulnerable to a similar challenge, but the prevailing attitude in the exoplanet community seems to be “innocent until proven guilty.” In the case of Rho Coronae Borealis b, the skeptical argument quietly won the day, and the proposed planet was excluded from EPE sometime around 2011.


Now Fulton’s group has conducted a concentrated observing program to test the planetary hypothesis. Their findings confirm the existence of planet b while ruling out even the dimmest of M dwarfs. Thus Rho Coronae Borealis, jewel in the Northern Crown, has returned to the fold of exoplanet host stars.


Fulton & colleagues also report a second planet (c) with an orbital period of 102 days and a semimajor axis of 0.41 AU, similar to Mercury’s. Depending on our viewing angle, the planet’s minimum mass of 25 Earth units (Mea) suggests either a large low-mass planet like GJ 436 b (a “Super Neptune” or tween) or a small gas giant. In the first alternative, Rho Coronae Borealis would present a relatively rare and extremely interesting architectural feature: a pair of adjacent planets in which the inner object is a gas giant and the outer is a low-mass planet like Neptune. Apart from Rho Coronae Borealis, just five examples of this architecture have been observed: our Solar System (Saturn + Uranus), GJ 876 (planets b + e), Kepler-87 (planets b + c), Kepler-89 (planets d + e), and WASP-47 (planets b + d).


In the second alternative, Rho Coronae Borealis might a scaled-down version of 55 Cancri, which presents an adjacent pair in which the inner object is a massive gas giant (planet b) and the outer is a tween (planet c) of about 55 Mea.

-------------------------------


One of my favorite articles of 2016 was “Challenges in Planet Formation,” by Alessandro Morbidelli & Sean Raymond, two seasoned veterans of exoplanetary science. The authors frankly discuss everything we don’t really know about the evolution of planetary systems, which their opening sentence describes as “a vast, complex, and still quite mysterious subject.” The same characterization could easily apply to our understanding of exoplanetology, given the vast, mysterious, and constantly expanding nature of the extrasolar census. As with planetary evolution, when it comes to the demographics of exoplanets, “even our most successful models are built on a shaky foundation” (Morbidelli & Raymond 2016).

So here’s looking forward to the mysterious, terrifying, and inevitably fascinating events and revelations to come in 2017 . . . .



REFERENCES
Endl M, Brugamyer EJ, Cochran WD, MacQueen PJ, Robertson P, Meschiari S, Ramirez I, Shetrone M, Gullikson K, Johnson MC, Wittenmyer R, Horner J, Ciardi DR, Horch E, Simon AE, Howell SB, Everett M, Caldwell C, Castanheira BG. (2016) Two new long-period giant planets from the McDonald Observatory Planet Search and two stars with long-period radial velocity signals related to stellar activity cycles. Astrophysical Journal 818, 34. Abstract: 2016ApJ...818...34E
Fulton BJ, Howard AW, Weiss LM, Sinukoff E, Petigura EA, Isaacson H, Hirsch L, Marcy GW, Henry GW, Grunblatt SK, Huber D, von Braun K, Boyajian TS, Kane SR, Wittrock J, Horch E, Ciardi DR, Howell SB, Wright JT, Ford EB. (2016) Three temperate Neptunes orbiting nearby stars. Astrophysical Journal 830, 46. Abstract: 2016ApJ...830...46F
Mayor M, Marmier M, Lovis C, Udry S, Ségransan D, Pepe F, Benz W, Bertaux J-L, Bouchy F, Dumusque X, Lo Curto G, Mordasini C, Queloz D, Santos NC. (2011) The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. Unpublished; abstract at https://arxiv.org/abs/1109.2497
Morbidelli A, Raymond S. (2016) Challenges in planet formation. Invited review; in press. Abstract: 2016arXiv161007202M
Noyes R, Jha S, Korzennik SG, Krockenberger M, Nisenson P, Brown TM, et al. (1997) A planet orbiting the star Rho Coronae Borealis. Astrophysical Journal 483, L111-L114.
Shen Y, Turner EL. (2008) On the eccentricity distribution of exoplanets from radial velocity surveys. Astrophysical Journal 685, 553-559.
Teske JK, Cunha K, Schuler SC, Griffith CA, Smith VV. (2013) Carbon and oxygen abundances in cool metal-rich exoplanet hosts: A case study of the C/O ratio of 55 Cancri. Astrophysical Journal 778, 132.
von Braun K, Boyajian TS, ten Brummelaar TA, Kane SR, van Belle GT, Ciardi DR, Raymond SN, Lopez-Morales M, McAlister HA, Schaefer G, Ridgway ST, Sturmann L, Sturmann J, White R, Turner NH, Farrington C, Goldfinger PJ. (2011) 55 Cancri: Stellar astrophysical parameters, a planet in the habitable zone, and implications for the radius of a transiting Super-Earth. Astrophysical Journal 740, 49.