Showing posts with label Grand Tack. Show all posts
Showing posts with label Grand Tack. Show all posts

Wednesday, May 31, 2017

The Small Mars Problem

Figure 1. All planets and dwarf planets orbiting within 6 astronomical units (AU) of our Sun, shown at their relative diameters.
------------------------------------------

From afar, our Solar System looks regular and well-organized. At its center is a large, massive sphere of incandescent gases (the Sun) surrounded by eight smaller and less massive spheres of heavier elements (the planets) distributed in concentric orbits out to a distance of about 4.5 billion km/2.8 billion miles.

The orbital distribution of the eight planets also seems regular, at least at first glance. Smaller, rocky worlds are confined to the inner system, while larger, gaseous worlds dominate the outer system. Planet sizes follow a curve, rising from the inner to the middle planets and then declining again from the middle to the outer planets.

In more specific terms, mass and radius increase along with distance among the three planets closest to the Sun (Mercury through Earth). Both parameters peak at the orbit of the fifth planet, Jupiter, which is almost a dozen times the radius and more than 300 times the mass of Earth. Then, from Jupiter through Uranus, the seventh planet, both mass and radius decline substantially along with distance from the Sun.

But this orderly progression of planet sizes has two notable interruptions: Mars and Neptune. If the distribution of planets were truly regular, Mars would be larger and more massive than Earth, and Neptune would be smaller and less massive than Uranus. Instead, the Red Planet has only 53% of Earth’s radius (0.53 Rea) and 11% of its mass (0.11 Mea), while the Azure Planet, at 17.2 Mea and 3.9 Rea, has about 98% of the radius of Uranus but 119% of its mass.

How did that happen?

In the present post I’m going to ignore the oddity of Neptune and concentrate on the Martian half of the question. My rationale is that Mars occupies our system’s classical habitable zone, and therefore – along with Earth and Venus – plays a critical role in theories of the habitability of extrasolar planets. If mass had been more uniformly distributed in the inner Solar System, Mars would be more massive than it is. If its mass were in the range of 1 to 2 Mea, Mars would likely be able to sustain a magnetic field, plate tectonics, surface water, and long-term habitability. Therefore, if we want to understand the potential system architectures that might support life-bearing planets, we need to understand why Mars is so small.

Figures 1 and 2 highlight the Small Mars Problem and the Great Martian Gap, which is the name I just invented for the general depletion of mass between Earth and Jupiter. The planet Mars and the dwarf planet Ceres orbit within this gap at 1.52 AU and 2.77 AU, respectively. With a little more than 1% of the mass of our Moon, Ceres accounts for fully one-third of all mass in the Asteroid Belt, which is concentrated between 2.2 and 3.3 AU (the latter boundary provided by the 2:1 resonance with Jupiter's orbit; Jewitt et al. 2009). The entire region between the orbits of Earth and Jupiter contains less than 0.12 Mea, with little Mars accounting for 99% of the total. By contrast, the region extending inward from Earth’s orbit to the Sun contains 1.87 Mea, yet Earth, the most massive object, accounts for only 53% of the total.

Figure 2. The Great Martian Gap

Blue numbers along the bottom refer to astronomical units (AU), where the Earth/Sun separation = 1. Planets are shown at their relative sizes and relative distances from the Sun, with separate scales for radius and distance. As astronomers have long noted, mass is severely depleted between the orbit of Jupiter at 5.2 AU and the orbit of Earth at 1 AU (see Weidenschilling 1977).
------------------------------------------

zigzag migration

Recent studies by Konstantin Batygin & Greg Laughlin (2015) and by Sean Raymond & colleagues (2016) have presented conflicting scenarios to explain the Small Mars Problem and the Great Martian Gap. Both involve zigzag migratory paths for Jupiter during the primordial phase of system evolution.

Batygin & Laughlin based their approach on earlier models by Kevin Walsh & colleagues (2011) and Pierens & Raymond (2011), in which Jupiter formed in the outer Solar System (somewhere beyond 3 AU) and then migrated first inward and then outward again. The popular name for this scenario (blogged here and here) is the Grand Tack. According to Batygin & Laughlin, these maneuvers not only swept most solid mass out of the region exterior to Earth’s present orbit, but also created an instability that emptied the region interior to 0.7 AU.

Raymond & colleagues took a very different approach based on the “inside out” model of planet formation presented by Chatterjee & Tan (2014). Contrary to his own earlier work, Raymond’s group proposed that Jupiter formed in the inner Solar System near the Sun, and then migrated first outward, then inward, and finally outward again, depleting the region inward of Venus and wreaking havoc beyond Earth.

sweeping secular resonances

While the Grand Tack has been more widely discussed and endorsed than the inside-out scenario, both explanations have been faulted. Now Benjamin Bromley & Scott Kenyon (2017) present an alternative approach in which “sweeping secular resonances” with Jupiter’s orbital motion, rather than any migratory scenario, become the mechanism for clearing the Great Martian Gap. Their model implies a less dramatic but equally consequential role for Jupiter, and I suspect that it can be extended to explain similar gaps observed in the architecture of multiplanet systems around other stars.

To develop their model, Bromley & Kenyon (hereafter BK17) conducted extensive numerical simulations based on earlier work by and with their collaborators Makiko Nagasawa and Edward Thommes (Nagasawa et al. 2007, Thommes et al. 2008). They also note recent work on the same problem by Xiaochen Zheng & colleagues (2017).

BK17 begin with the familiar theoretical construct of the Minimum Mass Solar Nebula (blogged here). They assume that a dusty gas nebula (generally known as a protoplanetary disk) is present at the outset of their simulations. Jupiter is fully formed at its current semimajor axis of 5.2 AU (Figure 2), having cleared a gap in the disk for 1 AU on either side of its orbital path. A swarm of planetesimals orbits inward of this gap, while Saturn orbits well beyond it. Both gas giants exert gravitational effects on their surroundings, and the disk itself has gravity. In addition, the orbit of Jupiter is slightly eccentric, but probably less so than its present value of 0.05. BK17 assume an eccentricity of 0.03 in their simulations.

The key factor in their approach is the n5 resonance (“nu-5,” Greek letter nu with superscript 5), a “secular” or “very long-term” resonance between the motion of the protoplanetary disk and Jupiter’s orbital period. BK17 define the nu-5 resonance as the location “where the local apsidal precession rate matches Jupiter’s rate of precession,” and note that a planetesimal or protoplanet at this location will be perturbed by Jupiter’s gravitational influence onto a highly eccentric orbit. The likely result will then be either collision with another planet or protoplanet, engulfment by the Sun, or ejection from the Solar System.

In the early Solar System, when the gas disk was still present, the nu-5 resonance was located in the vicinity of the present Asteroid Belt (Zheng et al. 2012). As the gas dissipated, the resonance moved inward, destabilizing (“shaking up”) the orbits of protoplanets and planetesimals and effectively clearing out a substantial mass in solids. After the gas was completely depleted, the nu-5 resonance reached its present position inside the orbit of Venus. This sweeping shake-up created the Great Martian Gap while leaving behind enough mass to build Earth and Venus, as well as their two by-blows, Mercury and Mars.

BK17 discovered that several different factors were critical to reproducing the mass of Mars and the present-day Asteroid Belt within the time constraints provided by the known age of Mars. These include the mass of the perturbing planet, its distance from the system habitable zone, and the timing and speed of the sweeping secular resonance generated by its orbital motion.

Regarding mass, BK17 find that only a “Jupiter-mass planet” can produce the magnitude of perturbation required to induce a shake-up in the protoplanetary disk of a Sun-like star. Unfortunately, they don’t provide a precise value for the necessary mass – for example, would an object of Saturn’s mass (95 Mea) be sufficient? They also note that a “super-Earth” would be massive enough to produce sweeping secular resonances in an M dwarf system, likely referring to an object in the range of 1-10 Mea (see, e.g., Kenyon & Bromley 2009).

Regarding orbital location, they find that the masses of Earth and Mars depend sensitively on the semimajor axis of Jupiter at the time of the sweeping resonance. If Jupiter had been substantially farther from the Sun, the resonance would never have reached the orbit of Mars, and Mars would have grown much bigger than it actually did – presumably massive enough to support a habitable environment. But if Jupiter had been substantially closer to the Sun, and thus closer to the system habitable zone, the resonance would have inhibited the formation of Earth in the same way that it stunted the growth of Mars when Jupiter was at 5.2 AU. Instead of one living planet, our system would have none at all.

Regarding the timing of the sweeping secular resonance, BK17 note that its schedule is determined by the lifetime of the protoplanetary disk. As we saw in an earlier post, the system age when gas dissipation commences can fall anywhere between 1 and 10 million years. At the early end of that range, according to BK17, dissipation accompanied by shake-up would have extremely negative consequences for rocky planet formation, as it would destroy planetesimals before they had time to accrete into protoplanets. At the latter end, however, the effects would be modest, since accretion would already be well advanced, potentially permitting the growth of Earth-size planets out to a distance of 3 AU. In the case of our Solar System, we can assume that the shake-up happened before a system age of about 4 million years, given radiometric evidence that Mars was fully formed by then.

The rate of disk dispersal also matters. Although many studies have found that gas dissipation happens rapidly, requiring less than half a million years from start to finish (Williams & Cieza 2011), variation is inevitable: some disks take longer than others to disperse. BK17 find that the relative speed of dissipation strongly affects the outcomes of secular resonance sweeping. If the gas dissipates quickly, the resonance sweeps inward at the same rate, resulting in minimal disruption of the planetesimal population. If the gas dissipates more slowly, the resonance becomes increasingly more destructive, clearing larger and larger quantities of solid mass from the system.

Figure 3. Calaveras street sweepers on the Day of the Dead
From a print by José Guadalupe Posada (1852-1913)
-----------------------

extrasolar asteroids and orbital gaps

Although BK17 are interested primarily in the evolution of our Solar System, they attempt to generalize some of their results to extrasolar locales. Their chief concern is the occurrence of extrasolar analogs of the Asteroid Belt. They argue that most systems with a gas giant in Jupiter’s approximate location (i.e., just outside the system ice line, where accretion is maximized) will experience a sweeping secular resonance whose outcome will be a ring of rocky debris in the inner system. While they concede that few such structures have been discovered to date (HD 69830 is most familiar), they attribute these limited findings to the difficulty of discerning modest aggregations of warm debris even around nearby stars. In the future, they predict, more sensitive searches will be more successful.

I suggest that the implications of their model are much broader than their relevance to extrasolar asteroid belts, and far more dispiriting. If sweeping secular resonances are common in systems with cool gas giants, then the outlook for habitable planets is even less promising than I thought. Here’s why.

An important focus of this blog is the possibility of Solar System analogs – that is, exoplanetary systems containing cool giants whose orbital parameters would permit the survival of Earth-mass planets (0.5-2 Mea) in the local habitable zone. (For recent posts on this topic, see here and here.) My January search of the Extrasolar Planets Encyclopaedia identified 17 such systems located within 60 parsecs/196 light years. All center on Sun-like stars in the range of 0.85-1.15 Solar masses, so their habitable zones have boundaries similar to those proposed for our own system (0.99-1.70 AU; Kopparapu et al. 2013).

Among the Jupiter analogs in these systems, semimajor axes range from 3 AU to 5.2 AU, and more than half orbit inside 4 AU. According to the findings of BK17, virtually all these systems will have experienced a sweeping secular resonance very similar to the one they propose for the Solar System. Because all but one of the 17 confirmed Jupiter analogs orbits closer to the local habitable zone than does our own Jupiter, the depletion of mass in this favored region is likely to be even more extreme than it was at home. Therefore, habitable planets appear to be less likely in the existing sample of Solar System analogs than they are in the Solar System.

To put it another way: BK17 have just shown that gas giant planets are even more unfriendly to the formation and survival of habitable planets than we already suspected. It’s not enough for the giant to reside outside the system ice line in a configuration that permits an Earth-like planet to maintain an Earth-like orbit. The giant must also be distant enough from the central star that the sweeping secular resonance generated by its orbit was insufficient to clear solid mass from the local habitable zone. Even Jupiter managed to evacuate mass from more than half of the radial extent of our own habitable zone, drastically reducing our system’s potential to produce life-bearing planets. Now it looks like extrasolar Jupiters might be still more likely to foreclose the possibility of life around other stars.


REFERENCES
Batygin K, Laughlin G. (2015) Jupiter’s decisive role in the inner Solar System’s early evolution. Proceedings of the National Academy of Sciences 112, 4214-4217. Abstract: 2015PNAS..112.4214B
Bromley BC, Kenyon SJ. (2017) Terrestrial planet formation: Dynamical shake-up and the low mass of Mars. Astronomical Journal 153, 216. Abstract: 2017AJ....153..216B
Chatterjee S, Tan JC. (2014) Inside-out planet formation. Astrophysical Journal 780, 53.
Jewitt D, Moro-Martín A, Lacerda P. (2009) The Kuiper Belt and Other Debris Disks. In Astrophysics in the Next Decade, edited by Harley A. Thronson, Massimo Stiavelli, Alexander Tielens. Springer. Abstract: 2009ASSP...10...53J
Kopparapu R, Ramirez RM, Kasting JF, Eymet V, Robinson TD, Mahadevan S, Terrien RC, Domagal-Goldman S, Meadows V, Deshpande R. (2013) Habitable zones around main-sequence stars: New estimates. Astrophysical Journal 65, 131.
Kenyon SJ, Bromley BC. (2009) Rapid formation of icy super-Earths and the cores of gas giant planets. Astrophysical Journal 690, L140-L143.
Nagasawa M, Thommes EW, Kenyon SJ, Bromley BC, Lin DNC. (2007) The diverse origins of terrestrial-planet systems. In Protostars and Planets V, edited by B. Reipurth, D. Jewitt, K. Keil. University of Arizona Press, pages 639-654. Abstract: 2007prpl.conf..639N
Pierens A, Raymond SN. (2011) Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. Astronomy & Astrophysics 533, A131. Abstract: 2011A&A...533A.131P
Raymond SN, Izidoro A, Bitsch B, Jacobson SA. (2016) Did Jupiter’s core form in the innermost parts of the Sun’s protoplanetary disk? Monthly Notices of the Royal Astronomical Society 458, 2962-2972. Abstract: 2016MNRAS.458.2962R
Thommes E, Nagasawa M, Lin DNC. (2008) Dynamical shake-up of planetary systems. II. N-body simulations of Solar System terrestrial planet formation induced by secular resonance sweeping. Astrophysical Journal 676, 728-739. Abstract: 2008ApJ...676..728T
Weidenschilling JS. (1977) The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science 51, 153-158.
Williams JP, Cieza LC. (2011) Protoplanetary disks and their evolution. Annual Review of Astronomy and Astrophysics 49, 67-117. Abstract: 2011ARA&A..49...67W
Zheng X, Lin DNC, Kouwenhoven MBN. (2017) Planetesimal clearing and size-dependent asteroid retention by secular resonance sweeping during the depletion of the Solar Nebula. Astrophysical Journal 836, 207.


Saturday, July 30, 2016

Jupiter Re-Ascending


Figure 1. Les Grands Zig-zags. The assembly and migration of Jupiter and Saturn through the primordial Solar nebula, according to a scenario presented by Sean Raymond & colleagues (2016).Numbers alongside the concentric semicircles indicate radii in astronomical units (AU), where 1 AU equals the radius of Earth’s present orbit and 5.2 AU equals the radius of Jupiter’s present orbit.
-------------------

This one slipped past me during the excitement of the spring music festivals: a new contribution by Sean Raymond & colleagues to the ongoing debate over the history of the inner Solar System. Here’s the background:
 
Our Solar System is weird. Among its most notable oddities is the dearth of mass inside a radius of one astronomical unit (AU, where 1 AU equals the average separation between Earth and Sun). Outside our system, the nearest G-type star known to harbor planets is 82 Eridani, at a distance of 20 light years. This metal-poor G8 star supports three planets with an aggregate mass at least 10 times Earth (10 Mea) inside an area equivalent to the orbit of Mercury. The next-nearest G-type host is 61 Virginis, located about 28 light years away. This G5 star hosts three planets with an aggregate mass in excess of 46 Mea inside the equivalent of the orbit of Venus. Both of these architectures are typical of multiplanet systems discovered by radial velocity and transit searches.
 
By contrast, the three planets closest to our Sun – Mercury, Venus, and Earth – have an aggregate mass smaller than 2 Mea.
 
Last year, two studies tried to find an explanation for the missing mass. Batygin & Laughlin (2015), hereafter BL15, proposed a solution that extends the popular scenario of the Grand Tack, which has been advocated by Pierens & Raymond (2011) and is discussed here and here. BL15 hypothesized that several Super Earth-type planets formed inside the present orbit of Mercury during the first few million years after the birth of our Sun, when it was still surrounded by an extensive nebula. (In this context, Super Earths should be understood as rocky or gassy planets of a few Earth masses.) No sooner had these objects assembled than the growing core of Jupiter began migrating from the outer Solar nebula to the vicinity of the present orbit of Mars. Young Jupiter’s inward passage swept a huge swarm of planetesimals into the inner system, causing perturbations that destabilized the orbits of the Super Earths. As a result, both the planets and the planetesimals were engulfed by the Sun. At this point, Jupiter executed a dramatic course change (the Grand Tack itself) which carried it back into the outer system on the nebular tides, courtesy of an intimate connection with its smaller and chillier sidekick, Saturn. Meanwhile, the inner system catastrophe left behind a ring of debris that coalesced into the four terrestrial planets we know today.
 
Volk & Gladman (2015), hereafter VG15, also proposed that our system originally harbored a cluster of planets inside the present orbit of Mercury (“intra-Mercurians”). In all other ways, however, their model differs markedly from BL15. To start with, their intra-Mercurian objects are similar in mass to Earth and Venus, not to Super Earths like 82 Eridani b or 61 Virginis b. A more striking difference is that VG15 implicitly reject both the Nice Model and the Grand Tack, since their scenario does not involve the outer Solar System at all. Instead, VG15 suggest that the four terrestrial planets assembled exactly where we see them today, outside the orbits of the intra-Mercurian planets, with which they peacefully coexisted for tens of millions of years. Then, one bright millennium, an abrupt dynamical instability upset the apple cart. The intra-Mercurians devolved into a donnybrook of orbit crossings and collisions that rapidly ground them into dust. The dust itself was then engulfed by our Sun, while the four terrestrial planets continued circling the scene of the catastrophe like horrified onlookers. The only remaining evidence of those disintegrated inner planets can be found in the cratered surfaces of Mercury, the Moon, and Mars, which were pelted by fragments during the period of annihilation. In sharp contrast, the Nice Model argues that these rocky worlds were etched by a storm of asteroids that originated in a dynamic instability among the four outer planets – Jupiter, Saturn, Uranus, and Neptune.
 
Figure 2. Inside-out planet formation

This image appears as Figure 1 of Chatterjee & Tan 2014. (i) The magnetic field of the young star creates a cavity in the center of the gaseous protoplanetary disk. Immediately outside the cavity is a “dead zone” through which pebbles drift. (ii) Pebbles accumulate in a ring around the edge of the cavity, where the gas pressure is at its maximum. (iii) The pebble ring coalesces into an Earth-size planet. (iv) The dead zone retreats from the star, creating a new pressure maximum at a larger radius where new pebbles accumulate and potentially form a new planet. Abbreviations: MRI = magnetorotational instability; P max = pressure maximum.
 
-------------------

pebble pile-up with outward migration
 
Raymond & colleagues (hereafter R16) take a completely different approach to the problem, one that does not involve either a primordial clutch of small planets or an inner system catastrophe. Although R16 note that their model is consistent with the Grand Tack, they emphasize its theoretical independence. Their starting point is actually the scenario of “Inside-Out Planet Formation,” as presented in an article of the same name by Sourav Chatterjee and Jonathan Tan (2014). Figure 2 provides a high-level summary.
 
R16 begin with the very earliest stages of accretion in the Solar nebula. They hypothesize that a large rocky planet assembled out of pebbles orbiting near the inner edge of the nebula, at an approximate semimajor axis of 0.1 AU. This object was proto-Jupiter (Figure 2.iii). Once it attained a few Earth masses, it was subject to torques exerted by the ambient gases, which caused it to migrate outward to a semimajor axis of about 5 AU. Along the way, the migrating core cleared all solid material from the nebula interior to 1 AU, shepherding some of it onto exterior orbits. This shepherding process likely resulted in the formation of a second core – proto-Saturn – which young Jupiter continued to herd during its journey into cooler regions of the nebula. Both objects accreted mass during this process, eventually initiating the runaway accretion of extensive envelopes of hydrogen and helium (H/He).
 
As R16 argue, this scenario explains why the area inside Mercury’s orbit is completely empty of mass. The rocky material that originally accumulated in this space was accreted by young Jupiter, which continued accreting and scattering planetesimals as it ascended beyond the radii that would later mark the orbits of Earth and Mars. Once Jupiter attracted sufficient H/He to become a gas giant planet, it opened a gap in the surrounding nebula, initiating the process of Type II migration. Then, having arrived in the cool zone, Jupiter immediately turned around and retraced its path.
 
By this stage in the narrative we’ve reached the threshold of the Grand Tack. Saturn was now following Jupiter instead of being herded ahead of it, and the gap between the two planets kept narrowing until their orbits entered a mean motion resonance. At that point, when Jupiter had reached a radial distance of about 2 AU (Brasser & al. 2016), the direction of their migration switched again and they sailed into the outer nebula for the last time.
 
Figure 3. Jupiter Ascending with Ganymede

A boy and his eagle: Ganymede & Jupiter. In Greek mythology, Ganymede was a Trojan prince of uncommon beauty. Spying him from on high, Zeus (Latin Jupiter) assumed the form of an eagle, swooped down to Earth, and carried the boy back up to Mount Olympus, where Ganymede became the cupbearer of the gods. The beverage he served in heaven was nectar, a delicious liquid that confers immortality. In 1906, the Anheuser-Busch Brewing Ass’n appropriated the myth of Ganymede to promote their own version of heavenly nectar: Budweiser beer, now one of the most popular alcoholic beverages on Earth. Credit: Wikimedia.
-------------------

The full scenario involves a double zigzag that calls to mind the mark of Zorro (Figure 1). Jupiter’s outward-inward-outward path also recalls a Greek myth in which Zeus (the Greek equivalent of Roman Jupiter) swooped down into the terrestrial zone, abducted a youth named Ganymede, and carried him aloft into the upper spheres of heaven (Figure 3). Indeed, it seems likely that Jupiter’s satellite system – of which Ganymede is the most prominent member – formed just as the Solar nebula was dissipating (Alibert & al. 2005). In the Grand Zigzag scenario proposed by R16, this process is constrained to occur when Jupiter arrived in the vicinity of its present orbit, potentially bearing a circumplanetary disk of solids (proto-Ganymede) enriched by the planet’s wanderings through the nebula.
 
Wisely, R16 ask whether this intricate sequence of events is “a generic process” or a relatively rare occurrence “confined to only a limited range of conditions.” While they lean toward the first option, they concede that planetary systems containing both an inner system of Super Earths and an outer system of gas giants would be challenging to explain in the context of the Grand Zigzag. In this regard I hasten to note that Chatterjee & Tan (2014) originally developed their model of inside-out planet formation to explain the architecture of tightly packed systems of low-mass planets such as Kepler-11 and Kepler-20, not mixed-mass systems resembling HD 219134, Kepler-167, or our Solar System. The adoption of this approach by R16 appears quite novel in the context of the prehistory of the Solar System, where its application - in my view – seems tortuous.
 
critique of competing models
 
My favorite section of R16 is their discussion of alternative explanations for the missing mass in the inner Solar System. The authors make quick work of two studies to which they themselves contributed: Morbidelli & al. 2016, which explains the void as a lingering effect of the condensation front for silicate dust in the primordial Solar nebula, and Izidoro & al. 2015, which argues that the formation of Jupiter blocked the migration of solids from the outer system, starving the inner system of the mass it needed to form short-period Super Earths. Neither approach holds up under their analysis. I find this skeptical attitude particularly impressive, since healthy self-criticism is essential in scholarly work.
 
R16 dispose of VG15 with similar ease, arguing that the furious impacts invoked to explain the disappearance of several primeval planets “would not have fallen in the ‘super-catastrophic’ regime” needed to achieve total annihilation. Instead, the debris from any erosive impacts would simply be swept up by the remaining planets in the inner Solar System. R16 thereby confirm my own doubts that a whole subsystem of planets could vanish without a trace, but they do so with a better-informed argument than I could hope to make. As they conclude, “we do not expect that a system of close-in terrestrial planets could self-destruct.”
 
R16 devote considerably more space to their takedown of BL15. First, they find that the “massive pulse of collisional debris” generated by Jupiter’s inward migration in that scenario would merely accelerate mass accretion by any planets forming in the inner system. Second, they argue that this swarm of debris would not be physically capable of shepherding a clutch of Super Earths into ever-shrinking orbits. Instead, they suggest that this catastrophic outcome was just an artifact of the simulation code used by BL15. In reality, they contend, a mass of planetesimals would “self-interact and grow” rather than push a planet to the brink of its host star’s gravity well. Finally, R16 challenge the notion that planets can simply be pushed into their stars, because all evolving protoplanetary disks develop a cavity interior to about 0.1 AU where gas dynamics cease. An object forced into this void, they say, would be more likely to stabilize on a new orbit than to set the controls for the heart of the Sun.
 
In parting, R16 note a striking irony in the model presented by BL15. Whereas Batygin & Laughlin “invoke the rapid inward drift of solids to destroy super-Earths,” many other models have proposed the same process to create them.
 

Twenty-first century superstars Channing Tatum and Eddie Redmayne appeared in this star-crossed science fiction epic. “Jupiter” herself was played by Mila Kunis. All three actors have seen much more success in other movies.
-------------------

Sometimes I wonder if I’m getting mental whiplash from the barrage of new theories about the evolution of our own planetary system and others. Nevertheless, when it comes to activities of the mind, I’d prefer an embarrassment of riches to an empty cupboard!

 


 

REFERENCES
Alibert Y, Mousis O, Benz W. (2005) Modeling the Jovian subnebula. I. Thermodynamic conditions and migration of proto-satellites. Astronomy & Astrophysics 439, 1205-1213.
Batygin K, Laughlin G. (2015) Jupiter’s decisive role in the inner Solar System’s early evolution. Proceedings of the National Academy of Sciences 112, 4214-4217. Abstract: 2015PNAS..112.4214B
Brasser R, Matsumura S, Ida S, Mojzsis SJ, Werner SC. (2016) Analysis of terrestrial planet formation by the Grand Tack model: System architecture and tack location. Astrophysical Journal 821, 75.
Chatterjee S, Tan JC. (2014) Inside-out planet formation Astrophysical Journal 780, 53.
Izidoro A, Raymond S, Morbidelli A, Hersant F, Pierens A. (2015) Gas giant planets as dynamical barriers to inward-migrating Super-Earths. Astrophysical Journal Letters 800, L22.
Morbidelli A, Bitsch B, Crida A, Gounelle M, Guillot T, Jacobson S, Johansen A, Lambrechts M, Lega E. (2016) Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368-376.
Pierens A, Raymond SN. (2011) Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. Astronomy & Astrophysics 533, A131. Abstract: 2011A&A...533A.131P
Raymond SN, Izidoro A, Bitsch B, Jacobson SA. (2016) Did Jupiter’s core form in the innermost parts of the Sun’s protoplanetary disk? Monthly Notices of the Royal Astronomical Society 458, 2962-2972. Abstract: 2016MNRAS.458.2962R
Volk K, Gladman B. (2015) Consolidating and crushing exoplanets: Did it happen here? Astrophysical Journal Letters, 806: L26. Abstract: 2015ApJ...806L..26V

 

Saturday, December 19, 2015

Evolutionary Twist



Figure 1. The Sun-like star WASP-47 hosts a transiting Hot Jupiter flanked by two low-mass planets, and all three have periods shorter than 10 days. This was the first and so far the only detection of such a configuration. Above, an artist’s rendering shows a Hot Jupiter in transit across the face of its star. Credit: European Southern Observatory
------------------------------
A few months back I wrote about WASP-47b, the first Hot Jupiter ever found with low-mass planets on nearby orbits. I noted my eagerness to see a theoretical study of the possible formation mechanisms behind this unusual system, while venturing that the orbital architecture of WASP-47 could not have resulted from in situ accretion.

Then last month I took a close look at a study by Konstantin Batygin & Greg Laughlin (2015), who offered a novel explanation for the formation of the inner planets of the Solar System. Their approach folds the evolutionary history of the four terrestrial planets into the Nice Model and the Grand Tack. I observed in passing that, although Laughlin was one of the earliest proponents of in situ theory (which underlies the scenario that he and Batygin proposed), he hadn’t written anything purely theoretical on this topic for quite a while.

Two new preprints respond serendipitously to those conjectures and observations. One is a theoretical study by Batygin, Bodenheimer & Laughlin (2015) on the potential for Hot Jupiters – Hot Jupiters, no less! – to form in situ. The authors develop a new formation scenario for star-hugging gas giants and use numerical simulations to test it. Then they appeal to the WASP-47 system as possible evidence that this mechanism really works.

The second preprint is also highly theoretical. Nathan Kaib and John Chambers (2015) tersely present the results of a large ensemble of numerical simulations designed to test the Nice Model of Solar System evolution. Their findings question the utility of this approach as an explanation for the Late Heavy Bombardment. They can also be interpreted as evidence that our four terrestrial planets formed after, not before, the dynamical instability addressed by the Nice model. Although Kaib & Chambers don’t mention the recent articles by Batygin & Laughlin or Volk & Gladman on the inner Solar System, their conclusions call for rethinking both the Nice model and the Grand Tack.

a burning cradle for baby giants?

The new study by Batygin & colleagues (hereafter B15) is called “In situ formation and dynamical evolution of Hot Jupiter systems.” The title is a misnomer, however, as they don’t actually model the in situ accretion of solids on orbits where Hot Jupiters are observed. Instead, as often happens in simulation studies, they use simplified initial conditions to examine a narrowly defined question: Can a dense planet of sufficient mass, orbiting at or near the inner edge of a protoplanetary nebula, accrete enough ambient hydrogen to balloon into a gas giant?

B15 offer four representative evolutionary sequences in which solid planetary cores at a range of masses follow circular orbits around a Sun-like star at a semimajor axis of 0.05 AU. They “purposely adopted an agnostic viewpoint” regarding formation mechanisms, explaining that their results “are largely independent of how the solid core arises.” The simulations seem equally friendly to x) strict in situ formation involving the accretion of local mass only; y) migration of solids from cooler orbits into the hot inner nebula and subsequent accretion at the new location; or z) migration of fully-formed cores from cooler orbits.

In units of Earth mass (Mea), the core masses they select are 4 Mea, 10 Mea, and 15 Mea. The object of 15 Mea is used in two different set-ups, one with low ambient gas density and the other with higher density. As a reality check, I note that atmosphere-free planets of 10 Mea or more are not attested (Jontof-Hutter et al. 2015), while realistic models of planet formation have great difficulty forming an object of 4 Mea or more at 0.05 AU, where silicate dust sublimates (Dullemond & Monnier 2010).

Regarding gas accretion, B15 concede that insufficient mass in ambient gas would be available in the local feeding zone to build a gas giant at 0.05 AU. Therefore, they assume that the local supply of hydrogen/helium is constantly replenished by the regular flow of gas through the nebula onto the infant star. Their model seems to hinge on the capacity of the short-period planet to capture this inrushing gas.

Across simulations, objects of 15 Mea were the only ones that managed to accrete gas envelopes equal in mass to their solid cores and thereby trigger runaway gas accretion. Thus, they find that the minimum core mass capable of growing into a gas giant in the vicinity of a Sun-like star is 15 Mea.

Figure 2. Light curves of the three inner planets of WASP-47
Phase-folded light curves of the three transiting planets detected by the K2 mission: Becker et al. 2015
---------------------------------------

B15 conclude that their scenario will regularly produce gas giants, so that in situ formation might “represent the dominant channel for hot Jupiter generation.” They proceed to a discussion of WASP-47b as an example of what this channel might bring.

But I’m not convinced. The likeliest origin for an object of 15 Mea with a semimajor axis around 0.05 AU is migration from a wider orbit where accretion can more readily produce such massive objects. As far as I know, a gas giant can migrate into a hot orbit just as easily as a Neptune-mass object can. So why resort to a two-step process – first migrate the core, then capture the atmosphere – when a well-theorized one-step process (Type II migration) works even better? B15 appear to be offering a solution in search of a problem.

They cite WASP-47 as a rare system in which a compact family of Super Earths somehow managed to promote one of their number to giant status without changing any semimajor axes or otherwise disrupting the rest of the family. But it seems that considerable acrobatics would be needed to achieve this remarkable outcome. For example, how did only one planet get pumped up? What kept the others down?

I suggest that, along with exploring novel in situ explanations for the evolution of WASP-47, the exoplanet community should test whether migration scenarios could explain this architecture with fewer contortions.

Figure 3. The wreck of the Kronan
In 1676, the Swedish warship Kronan capsized while trying to execute a sharp turn under too much sail, causing an explosion in the gunpowder magazine. Few survived. Illustrated is an imaginative (and historically inaccurate) rendering of the disaster by Claus Moinichen in 1686.
---------------------------------------

does the sailing master have no clothes?

The study by Kaib & Chambers is conducted on a grander scale than B15. They ran almost 300 high-resolution simulations of Solar System evolution to test three different versions of the Nice model and explore the effects of the resulting dynamical instability on the four terrestrial planets. A simulation was considered successful if the final system met three criteria after the instability concluded: A) all four outer planets from Jupiter to Neptune survived, with the orbits of Saturn and Jupiter lying between a 2:1 and 3:1 mean motion resonance; B) all four inner planets also survived on stable orbits; and C) the angular motion deficit of the four inner planets was less than or equal to its present value after their orbits were integrated for an additional billion years.

In all three versions of the initial set-up, the four terrestrial planets were assigned their present masses and orbits. In two versions, the outer system contained Jupiter, Saturn, and three Neptune-like planets. In the third, it contained Jupiter, Saturn, two Neptune-like planets, and two “Super Earths” of 8 Mea each. Among all iterations of these set-ups, the success rate according to Criterion A was 13% to 16%. However, the set-up with six outer planets failed both of the other criteria, while the other two models produced just 1 and 2 systems, respectively, that met Criterion B. Only one iteration of one of these models also met Criterion C. All other iterations lost at least one terrestrial planet (usually Mercury), and many lost two (usually Mercury and Mars).

These results are very likely to inform future discussions of the Nice Model. As Kaib & Chambers conclude:

[W]e find a probability of 1% or less that the orbital architectures of the inner and outer planets are simultaneously reproduced in the same system. These small probabilities raise the prospect that the giant planet instability occurred before the terrestrial planets had formed. This scenario implies that the giant planet instability is not the source of the Late Heavy Bombardment and that terrestrial planet formation finished with the giant planets in their modern configuration.

Notably, the recent study by Volk & Gladman (2015) proposed an approach to the evolution of the four terrestrial planets that dispensed with the Nice Model altogether, suggesting an alternative explanation for the Late Heavy Bombardment. Although I don’t find their alternative persuasive, I hope these efforts inspire further evolutionary studies to address the problem of our denuded inner system.

In the meantime, the findings of Kaib & Chambers might benefit from reframing. As discussed in earlier blog posts, the phenomenon known as the Late Heavy Bombardment or Lunar Cataclysm can be understood in different ways. In one view, it was a self-contained period of heavy cometary impacts that were preceded and followed by long stretches of relative calm; its peak came about 3.8 billion years ago (Gya), at a system age of ~800 million years (Gomes et al. 2005). In another, it was simply one episode in a long, saw-toothed series of bombardments that began with Earth’s accretion and subsided only toward the end of the Archean period, about 2.5 – 3 Gya (Morbidelli et al. 2012, Marchi et al. 2014). Instead of triggering a late and relatively short-lived catastrophe, maybe the dynamic instability happened in the first 100 million years of Solar System history and inaugurated that long and violent epoch of bombardments. The Nice Model would still explain how the massive outer planets nudged and jostled one another into their mature (and usually wider) orbits.

Figure 4. Overview of Earth history


Again, maybe the failure of a single model to explain the final architecture of the inner as well as the outer Solar System is another clue that we need a new picture of inner system evolution. What if the Grand Tack triggered an inner system catastrophe, as modeled by Batygin & Laughlin (2015), but the resulting mess did not immediately resolve into a four-planet system? Maybe the battle of oligarchs that followed Jupiter’s retreat from the Sun’s inner territories was still raging while Neptune was decimating the outer realms. Maybe lasting peace in the inner system was contingent on resolving tensions among the outer worlds, a resolution that evidently hinged on the exile of a Uranus-type planet. Maybe the final detente between Jupiter and Saturn was what enabled Earth to dominate its three smaller siblings.

-------------

REFERENCES
Batygin K, Laughlin G. (2015) Jupiter’s decisive role in the inner Solar System’s early evolution. Proceedings of the National Academy of Sciences 112, 4214-4217. Abstract: 2015PNAS..112.4214B
Batygin K, Bodenheimer P, Laughlin G. (2015) In situ formation and dynamical evolution of Hot Jupiter systems. In press. Abstract: 2015arXiv151109157B
Becker J, Vanderburg A, Adams F, Rappaport S, Schwengler H. (2015) WASP-47: A Hot Jupiter system with two additional planets discovered by K2. Astrophysical Journal Letters 812, L18. Abstract: 2015ApJ...812L..18B
Dullemond CP, Monnier JD. (2010). The inner regions of protoplanetary disks. Annual Review of Astronomy & Astrophysics 48, 205-239.
Gomes R, Levison HF, Tsiganis K, Morbidelli A. (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435: 466-469. Abstract: 2005Natur.435..466G
Jontof-Hutter D, Ford EB, Rowe JF, Lissauer JJ, Fabrycky DC, Christa Van Laerhoven5, Agol E, Deck KM, Holczer T, Mazeh T. (2015) Robust TTV mass measurements: Ten Kepler exoplanets between 3 and 8 Mearth with diverse densities and incident fluxes. In press.
Kaib NA, Chambers JE. (2015) The fragility of the terrestrial planets during a giant planet instability. Monthly Notices of the Royal Astronomical Society. In press. Abstract: http://arxiv.org/abs/1510.08448
Marchi S, Bottke WF, Elkins-Tanton LT, Bierhaus M, Wuennemann K, Morbidelli A, Kring DA. (2014) Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578-582. 2014Natur.511..578M
Morbidelli A, Marchi S, Bottke WF, Kring DA. (2012) A sawtooth-like timeline for the first billion years of lunar bombardment. Earth and Planetary Science Letters 355, 144-151. Abstract: http://adsabs.harvard.edu/abs/2012E%26PSL.355..144M
Volk K, Gladman B. (2015) Consolidating and crushing exoplanets: Did it happen here? Astrophysical Journal Letters, 806: L26. Abstract: 2015ApJ...806L..26V